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First Lecture

Introduction to Heat Transfer

1- What is Heat Transfer?

“Energy 1n transit due to temperature difference.”

Thermodynamics tells us:

* How much heat 1s transferred (0Q)
» How much work 1s done (6W)

® Final state of the system

Heat transfer tells us

* How (with what modes) 6Q i1s transferred
® At what rate 6Q 1s transferred

=  Temperature distribution inside the body

Heat transfer

complementary

Thermodynamics

2- Heat transfer Modes.

v Conduction

- needs matter
- molecular phenomenon (diffusion process)

- without bulk motion of matter

v" Convection

- heat carried away by bulk motion of fluid
- needs fluid matter

v’ Radiation

- does not needs matter
- transmission of energy by electromagnetic waves
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3- Applications of Heat Transfer.

v Energy production and conversion
- steam power plant, solar energy conversion etc.
v' Refrigeration and air-conditioning
v Domestic applications
- ovens, stoves, toaster
v" Cooling of electronic equipment
v Manufacturing / materials processing
- welding.casting, soldering, laser machining
v' Automobiles / aircraft design
v Nature (weather, climate etc)

4- Heat Transfer by Conduction Mode.

In this mode type of heat transfer required (Medium and Temperature Gradient)
T>T, T,
T1 . ..

RATE:

q(W) or (J/s) (heat flow per unit time)



Subject: Heat Transfer-I

Dr. Mustafa B. Al-hadithi ae

Rate equations (1D conduction):

A 0 Differential Form
q=-kAdT/dx, W
k = Thermal Conductivity, W/mK
A = Cross-sectional Area. m?
T = Temperature, K or °C
X = Heat flow path, m
J Difference Form

q=kA(T,-T,)/(x;-%X,)

Heat flux: q” = q/ A = - kdT/dx (W/m?)

(negative sign denotes heat transfer in the direction of
decreasing temperature)

[ Example:

The wall of an industrial furnace is constructed from 0.15 m
thick fireclay brick having a thermal conductivity of 1.7
W/mK. Measurements made during steady state operation
reveal temperatures of 1400 and 1150 K at the mner and outer
surfaces, respectively. What 1s the rate of heat loss through a
wall which 1s 0.5 m by 3 m on a side ?



Subject: Heat Transfer-1

Dr. Mustafa B. Al-hadithi

5- Heat Transfer by Convection Mode.

moving fluid

Ta

-_—

_—

_—
—_—

: q” Ts

% Energy transferred by diffusion + bulk motion of fluid

U

o

Heat transter rate q =hA(T-T ) W
Heat flux " =h(T-T ;) W/m?

h=heat transfer co-efficient (W /m?K)

-

y > .
— wy g )

T

S

The properties depends on geometry, nature of flow, thermodynamics properties

etc.

Convectiom

N
Free or natural

convection (induced by
buoyancy forces)

Forced convection

(induced by external
means) Y,

May occur with
phase change
(boiling,
condensation)
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Typical values of h (W/m?K)

Free convection gases: 2 - 25
liquid: 50 - 100

Forced convection gases: 25 - 250

liquid: 50 - 20,000

Boiling/Condensation 2500 -100.,000

6- Heat Transfer by Radiation Mode.

RATE:
q(W) or (J/s) Heat tlow per unit time.

Flux : q” (W/m?)
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Heat Transter by electro-magnetic waves or photons( no
medium required. )

Emissive power of a surface (energy released per unit area):

E=esT 4 (W/ m2)

€= emissivity (property).........

c=Stefan-Boltzimann constant

Area=A

Radiation exchange between a large surface and
surrounding
» = AT AW/ m?2
Q”,.4=ec(TAT ) W/ m
O Example:

An uninsulated steam pipe passes through a room mn which the
air and walls are at 25 °C. The outside diameter of pipe 1s 70
mm, and its surface temperature and emissivity are 200 °C and
0.8, respectively. If the coefficient associated with free
convection heat transfer from the surface to the air 1s 5

W/m?K. what 1s the rate of heat loss from the surface per umit
length of pipe ?
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Second Lecture

One Dimentional Steady State Heat Conduction

1- Obijectives of Conduction Analysis.

To determine the temperature field, T(x,y,z.t), in a body
(1.e. how temperature varies with position within the body)
AT (x.y.z.t) depends on:
- boundary conditions T(x.y.2)
- itial condition
- material properties (k, ¢, p ...)
- geometry of the body (shape, size)
AWhy we need T(x.y.z.t) ?
- to compute heat flux at any location (using Fourier’s eqn.)

- compute thermal stresses, expansion, detlection due to temp. etc.
- design msulation thickness

- chip temperature calculation
- heat treatment of metals

2- One Dimension Heat Conduction.

Solid bar, msulated on all :
long sides (1D heat
conduction) 4 A Qe ax

= Internal heat generation per unit vol. (W/m?)
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First Law (energy balance) ( E in — E out ) + E gen — E st

OF
QI o QI-Fﬂx + A(Ax)q - E_
¢
E=(p ANy ;= T
OF Bu oT '
— = pAA— = pAAxc— _ 9d,
o / o Tivax = 4+ AN

If k is a constant

d For T to rise, LHS must be positive (heat mput 1s
positive)
A For a fixed heat mput, T rises faster for higher o

A In this special case, heat flow 1s 1D. If sides were not
msulated, heat flow could be 2D, 3D.
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3- Boundary and Initial Conditions.

 The objective of deriving the heat diffusion equation is to
determine the temperature distribution within the conducting

body.

(d We have set up a differential equation, with T as the
dependent variable. The solution will give us T(x.v.z).
Solution depends on boundary conditions (BC) and 1nitial
conditions (IC).

How many BC’s and IC’s ?

- Heat equation 1s second order 1n spatial coordinate. Hence, 2
BC’s needed for each coordinate.

* 1D problem: 2 BC 1n x-direction
* 2D problem: 2 BC 1n x-direction, 2 i y-direction
* 3D problem: 2 i x-dir., 2 1n y-dir., and 2 in z-dir.

- Heat equation 1s first order in time. Hence one IC needed

4- Plan Wall Heat Conduction.

The Plane Wall
l l Cold
fluid
o
x=L

Const. K: solution is:

00,2
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5- Thermal Resistance (Electrical Analogy).

OHM’s LAW :Flow of Electricity

‘! =IR elect
R elec
V1 V2
: AN ——
—_—
T V12

Voltage Drop = Current flowxResistance

AT = gR

therm

Temp Drop=Heat Flow>Resistance

= therm

gq T1>T2
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6- Composit Wall.

e S
it e

LSSV e » il
' Ty A e T e e e
where, U = 'IA = Overall heat transfer coefficient

T

7- Overall Heat Transfer Coefficient.

Contact Resistance :
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1
Clemins T L 1
+ —4 4 =B 4 <
h, k s K h,
Senies-Parallel :
" B i A A=A =A
K B
T, 2 T, Lp=L¢
K A C I\ D
LE
L, kA L,
T de AV AN FCDA
- FAVAN . L. FAVAN T
L aked | )
Assumptions :

(1) Face between B and C 1s insulated.

(2) Uniform temperature at any face normal to X.
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Example:
Consider a composite plane wall as shown:
k, = 20 W/mk
d, A=1mZ L=1m
Ti=0% T¢=100°C
K= 10k h = 1000 W/ m2k
Aj=1m2 L=1m

Develop an approximate solution for th rate of heat
transfer through the wall.
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3" _ucture

Radial Conduction in Bodies

1- One Dimensione Radial Conduction through a Cylinder.

Assume no heat sources within the wall of the tube. If T,>T,. heat will flow
outward, radially, from the inside radius, Ry, to the outside radius, R,. The process will be
described by the Fourier Law.

The differential equation governing heat diffusion is: ldi(rd—:r] =0
rar

With constant k. the solution is

The heat flow rate across the wall is given by:
dl’  I4 Tsa—Ts2
Gr=—kAd—=—(Ta—Ts2)= e
dx L L/kA
In-

2 kL

Hence, the thermal resistance in this case can be expressed as:
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2- One Dimensional Radial Conduction in a Composite Cylinder

h,
T.,‘,,1
Tac TN Tao 1
; b
Tay T
1 E L 1
(hl)(Z”rlL) \ (hz)(Zm‘:L)
In -
e In >
27xLk 2

2xlk ,
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3- Critical Insulation Thickness.

Insulation Thickness : r -1,

T. 7\
h e
Rror e ( . ) & :
2 kL (27ryL)h
Objective : decrease q , increases R

Vary 1, : as r, increases .first term
mcreases, second term decreases.

Maximum — Minimum problem

Set AR 4 =0
dr,
et lianiey
2zkrol  2zhLr %o
T 25 ’
0. h d2R,o, B S e /‘;
Max or Min. ?.  Take: —. 7~ =9 iy
2
PR S |
dr o 2mkr 2oL mr’ohL |r0=5
h
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Minimum q at r,=(k/h)=r _ (critical radius)

tet | good for, By ; 7
3 i o :
electrical | £00d lor'steam pIpes &
cables
i R kh
1‘0 P ———

4- One-Dimension Conduction in Sphere.
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Inside Solid:
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5-Conduction with Thermal Enerqy Generation.

E
q= I—, = Energy generation per unit volume

Applications: * current carrying conductors
* chemically reacting systems

* nuclear reactors

The Plane Wall

Ts.l -
Assumptions:
T.. .
1 Ta) 1D, steady state,
Hot Cold constant k,
fluid : i .
i, fluid uniform ¢

x=-L =0 x=+L
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)
doTiira
+ =90
2
dx k
Boundary::ssecond - 5xi s By e s lss 1
e i
. SRR A
Sofution:: ol S i 5] O Wil &
1 2
2k
Use boundary conditions to find C; and C,
. . L[ X 1., 1., x 1., +1,
Final solution: T =4~ (1 i s
s L 2 L 2
No more linear
" dI Derive the expression and show that it is no

Heat flux q, =k

dx more independent of x
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6- Cylinder with Heat Source.

T, h | Assumptions:

1D, steady state, constant
k. uniform 94

Start with 1D heat equation in cylindrical
co-ordinates:

—1—"( )+—q 0
rdrNeariik

Boundary cond.: v =1, T :1';

r =0, dar 0
dr
. _ _q 2 7’ _
Solution: T(r) =1 |1— |11,
4 %

Example:

A current of 200A 1s passed through a stainless steel wire having a
thermal conductivity K=19W/mK, diameter 3mm, and electrical
resistivity R =0.99 Q. The length of the wire 1s lm. The wire1s
submerged 1n a liquid at 110°C, and the heat transfer coefficient is
4W/m’K. Calculate the centre temperature of the wire at steady
state condltlon
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Lecture Four

Extended Surface Heat Transfer

1- Extended Surface- Fins.

Convection: Heat transfer between a solid surface and a moving
fluid 1s governed by the Newton’s cooling law: q = hA(T.-T ).
Therefore, to increase the convective heat transter. one can

U Increase the temperature difference (T.-T ) between the
surface and the fluid.

 Increase the convection coefficient h. This can be
accomplished by increasing the tluid flow over the surface since
h 1s a function of the flow velocity and the higher the velocity,
the higher the h. Example: a cooling fan.

 Increase the contact surface area A. Example: a heat sink
with fins.
2- Extended Surface Analysis.
|

T, ( . . : the fin perimeter
A B

A the fin cross-sectional area

o

I

: dq,
:—A'A —_— } ql—d\ _QX + (f‘( (fx

A is the cross-sectional area

dq
dq

Energy Balance: ¢, =¢__, +dq,,, =q.+ d" dx+hdA (T -T,)
X

=h(dANT -T). whele dA 1s the surface area of the element

canv

—kA, L:r Tr:fr +hP(T —T,)dx =0, ifk, A are all constants.
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2
d zﬁ _ P (I'-1_)=0, A second - order, ordmary differential equation
dx” kA,
Define a new variable &(x) = 7(x)—7_, so that
ae , hP )
——m 60=0, wherem" = I—._ (D> —=m*)8=0
dx kA

Characteristics equation with two real roots: +m & -m

The general solution 1s of the form

B(x)=Ce™ +C,e™

To evaluate the two constants C, and C,, we need to specify

two boundary conditions:

The first one 1s obvious: the base temperature 1s known as T(0) = T,

The second condition will depend on the end condition of the tip

For example: assume the tip 1s insulated and no heat transfer
dO/dx(x=L)=0

The temperature distribution is given by
I(x)-T, @ coshm(L—-x)
Tb - T

oo

e, coshmlL

The fin heat transfer rate 1s
q;=—FkA; ? (x=0)= JﬁPﬁ’AC tanh mL = M tanh mL
Y

These results and other solutions using different end conditions are
Tabulated in HT Textbooks
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3- Temperature Distribution for Fins.

Case | Tip Condition Temp. Distribution Fin heat transfer
A Conveetion heat S rh : R : h
coshm(L —x) +( sinh m(L — x sinhmL + coshmL
transfer: ( ) 'A’k) ( ) Mg, (A?k)
h6(L)=-k(d8/dx)er coshmL + ( % ! j,;) sinhmL coshmL +(h ik )sinh mL
B Adiabatic coshm(L—x) M@, tanhmL
(d6/dx)=1 =0 coshmlL
¢ Given temperature: (‘91/ )smh m(L — x) +sinhm(L — x) (coshmL — H% )
6(L)= 6L 6, N 5
B - i B
sinh mL sinh mlL
D Infinitely long fin e ™ M g,
B(L)=0
, hP
6=T-1I_. m =
kA,

6,=6(0)=T,-T,. M =.[hPk4.6,

Example

L An Aluminum pot is used to boil water as shown below. The
handle of the pot 1s 20-cm long, 3-cm wide, and 0.5-cm thick.
The pot 1s exposed to room air at 25°C, and the convection
coefficient is 5 W/m? °C. Question: can you touch the handle
when the water 1s boiling? (k for aluminum 1s 237 W/m °C)

100 °C
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We can model the pot handle as an extended surface. Assume
that there 1s no heat transfer at the free end of the handle. The
condition matches that specified in the fins Table, case B.
h=5 W/ m? °C, P=2W+2t=2(0.03+0.005)=0.07(m), k=237 W/m
°C, A;=Wt=0.00015(m?), L=0.2(m)
Therefore, m =(hP/kA-)'*=3.138.
M=V(hPKA)(T,-T.)=0.1116,=0.111(100-25)=8.325(W)
I'(x)-T, & coshm(L—x)
1T, -T, N 0, ~ coshmL
T-25  cosh[3138(0.2—x)]
10025 cosh(3.138%0.2)
T(x) =25+ 62.32* cosh[3.138(0.2 — x)]

Plot the temperature distribution along the pot handle

100 | | |

95— =
T(x)

90— =

85
0 0.05 0.1 0.15 02

X

As shown, temperature drops off very quickly. At the midpoint
T(0.1)=90.4°C. At the end T(0.2)=87.3°C.
Theretfore, 1t should not be safe to touch the end of the handle
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T BN

The total heat transfer through the handle can be calcuiaiea
also. q/~Mtanh(mL)=8.325%tanh(3.138%0.2)=4.632(W)
Very small amount: latent heat of evaporation for water: 2257
kJ/kg. Therefore, the amount of heat loss 1s just enough to
vaporize 0.007 kg of water in one hour.

If a stamless steel handle 1s used instead. what will happen:
For a stainless steel, the thermal conductivity k=15 W/m°C.
Use the same parameter as before:

1/2

hP
m = Y =12.47, M =./hPk4. =0.0281
A

T'(x)-1, coshm(L—-x)
I,-T, coshmlL
T'(x)=25+12.3cosh[12.47(L — x)]

100 I I I

5 7

T® S50 =

25— I

0 0.05 0.1 0.15 02

Temperature at the handle (x=0.2 m) 1s only 37.3 °C, not hot at
all. This example 1llustrates the important role played by the
thermal conductivity of the material in terms of conductive heat
transfer.
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QIf the pot from previous lecture is made of other materials other
than the aluminum, what will be the temperature distribution? Try
stainless steel (k=15 W/m.K) and copper (385 W/m.K).

Recall: h=5W/m*°C, P=2W+2t=2(0.03+0.005)=0.07(m)
A~=Wt=0.00015(m?), L=0.2(m)

Therefore, m ~(hP/kA-)V?=12.47, m_=2.46

M. =V(hPk_A.) (T,-T.)=0.028(100-25)=2.1(W)

M., = V(hPk_A_) 6,=0.142(100-25)=10.66(W)

T .(x)-T, 6 coshm(L—x)
I, -T, - 0, ~ coshmL
I, —25 cosh[12.47(0.2 — x)]

100—-25  cosh(12.47%02) °
T (x)=25+123%cosh[12.47(0.2 — x)]

For stainless steel,

For copper, —= =
PPE- 1, - T, e, coshmlL

T, —25 cosh[2.46(0.2 —x)]

CHl

T,x)-T, 6 coshm(L—x)

100 -25  cosh(2.46*0.2)
T (x)=25+66.76 * cosh[2.46(0.2 — x)]

cu

100

g5 . -
T(X) & OPP e1

90

T (%) aluminum

T Cll( X)

85

stainless steel —

I I I I
¢ 004 008 012 016 02

80

75
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[ Inside the handle of the stainless steel pot, temperature drops
quickly. Temperature at the end of the handle 1s 37.3°C. This 1s
because the stainless steel has low thermal conductivity and heat
can not penetrate easily mnto the handle.

[ Copper has the highest k and. correspondingly, the temperature
inside the copper handle distributes more uniformly. Heat easily
transfers into the copper handle.

U Question? Which material 1s most suitable to be used in a heat

sink?
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Lecture Five

Fin Specifications and Design

1- Correction Length.

dIn some situations, it might be necessary to include the
convective heat transfer at the tip. However, one would like to
avold using the long equation as described in case A, fins table.
The alternative 1s to use case B imstead and accounts for the
convective heat transfer at the tip by extending the fin length L to
L=L+(t/2).

With convection L.=L+t/2  Insulation
& L
t P
i S
Original fin length L I “ t/2

Then apply the adiabatic condition at the tip of the extended fin as
shown above.

Use the same example: aluminum pot handle, m=3.138. the

length will need to be corrected to

L=1+(t/2)=0.2+0.0025=0.2025(m)

I,.(x)-T, 6 coshm(L, —x)

I, — I, 0, coshmlL,
T, —25 cosh[3.138(0.2025 - x)]

100—25  cosh(3.138*0.2025)
T (x)=25+62.05*cosh[3.138(0.2025 — x)]
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100
9623 T(0.2)=87.32 °C
= T(0.2)=87.09 °C
Tdx) o5 T..;(0.2025)=87.05 °C
T COI{'X)

88.75 slight improvement

over the uncorrected

85 ‘ .
0 0.04 008 012 0.16 0.2 solution

U The correction length can be determined by using the formula:
L =L+(A_P), where A_1s the cross-sectional area and P 1s the
perimeter of the fin at the tip.

O Thin rectangular fin: A =Wt, P=2(W+t)~2W, since t << W
L =L+(A/P)=L+(Wt/2W)=L+(t/2)

J Cylindrical fin: A =(n/4)D?, P= nD, L =L+(A_/P)=L+(D/4)

 Square fin: A =W=, P=4W,
L =L+H(A/P)=LH(W/4W)=L+(W/4)
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A In general, the longer the fin, the higher the heat transter.
However, a long fin means more material and increased size and

cost. Question: how do we determine the optimal fin length?

Use the rectangular fin as an example:

q; =M tanhmL, for an adiabatic tip fin

1

08 - (g,)., =M. for an infinitely long fin
0.6 — . _ q;
R(mL) Their ratio: R(mL)=—— = tanhmL
0.4 — ((ff ).
0.2 7| Note: heat transfer increases with mL
0 ' as expected. Initially the rate of
0 1 2 3 4

change 1s large and slows down
drastically when mlL> 2.

R(1)=0.762, means any increase beyond ml.=1 will increase no
more than 23.8% of the fin heat transfer.

2- Temperature Distribution.

For an adiabatic tip fin case: » Use m=5, and L=0.2
T-T, coshm(L—x) as an example:

Q_Tb—Tm coshmlL

Low AT, poor fin heat transfer
High AT, good fin heat transfer /

L{).64805440_6 l l l
0 0.05 0.1 0.15 0.2
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3- Ein Design.
T, B
/ Total heat loss: q=Mtanh(mL) for an
T, adiabatic fin, or g=Mtanh(mL.) if there 1s
N\ convective heat transfer at the tip

where m= /}f . and M=,/hPkA 6, = J/hPkA (7, - T )

Use the thermal resistance concept:
q, = /0PkA tanh(mL)(T, - T,) = G?J

t.f
where R, ; 1s the thermal resistance of the fn.

For a fin with an adiabatic tip. the fin resistance can be expressed as
_T,-1) _ 1

AN ; m [tanh(mL)]

4- Fin Effectiveness.

R

tin effectiveness ¢ Ratio of fin heat transter and the heat transfer
without the fin. For an adiabatic fin:

4 q; B JHPkA . tanh(mL) _ ihrf tanh(mL)
“C

g hAAT,-T,)) hA,

[f the fin 1s long enough, m[.>2, tanh(mL) — 1,

Es

it can be considered an infinite fin (case D of table3 4)

£, —> i
i A,

In order to enhance heat transfer. E;> 1.

However, &, > 2 will be considered justifiable

If £ < 1 then we have an msulator instead of a heat fin
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U To increase &, the fin’s material should have higher thermal
conductivity, k.

U It seems to be counterintuitive that the lower convection
coefticient, h, the higher e, But it 1s not because 1f h 1s very high,
it 1s not necessary to enhance heat transfer by adding heat fins.
Therefore. heat fins are more effective if h 1s low. Observation: If
fins are to be used on surfaces separating gas and liquid. Fins are

usually placed on the gas side. (Why?)

O P/AC should be as high as possible. Use a square fin with
a dimension of W by W as an example: P=4W_ AC=W2,
P/AC=(4/W). The smaller W, the higher the P/AC, and the
higher ef.

[ Conclusion: It 1s preferred to use thin and closely spaced

(to mcrease the total number) fins.

The effectiveness of a fin can also be characterized as
_9r q; @,-T)/R, R,

P — = _ —
4 q h‘;‘lC (}:3 - TCD) (}_‘; _ Tm ) "Ii RIJJ‘ er

It 1s a ratio of the thermal resistance due to convection to

the thermal resistance of a fin. In order to enhance heat transfer.
the fin's resistance should be lower than that of the resistance

due only to convection.
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5- Fin Efficiency.

C e q,
Define Fin efficiency: 7, = ——
qﬂlﬂ.}‘:

where ¢ . represents an idealized situation such that the fin 1s made up
of material with infinite thermal conductivity. Therefore, the fin should
be at the same temperature as the temperature of the base.

=hAd (I, - T,)

q max

For infinite k
T(x)=T, the heat transfer
1S maximum

T(x)<T, for heat transfer
to take place

T
b < .
Total fin heat transfer q; Ideal heat transter q_
Real situation Ideal situation

Use an adiabatic rectangular fin as an example:

qr M tanhmL JAPKA (T, - T )tanhmlL

r?f:gmax_h‘{f(rb_rw)_ ;'IPL(‘TEJ_‘T.«;)

_ fanhml _ tanhml (see Table 3.5 for p, of common fins)
hP mL
—L
kA,

The fin heat transfer: g, =5 ,q,,, =n,h4d,(T,-T,)

qr LT LT ypere R, , = !

1/(n hd;) R, ; nhd;
Thermal resistance for a single fin.
1
~ hd,

In order to have a lower resistance as that is required to

As compared to convective heat transfer: R,

enhance heat transfer: R,, > R, , or A, < n 4,
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6- Overall Fin Efficiency.

Overall fin efficiency for an array of fins:

% Define terms: Ay : base area exposed to coolant
Ay surface area of a single fin
Qs A_: total area including base area and total
tinned surface. A=A, +NA;
N: total number of fins
G, =Gy +Nqy =y (T, = 1,) + NijehA (T, — T,)
=h[(A4 —j\%f) +NnA, (7, -T,)=hl4 —NA(1- I}f)](ﬂ) -T)

NA,

=4[l ——=(-n )1, - T,)=n,h4(1, - T)

NA
Define overall fin efficiency: 77, =1 —Tf (I-7,)

7- Heat Transfer from a Fin Array.

bh=to here R = :

R.r,O h“i(‘r?[}

Compare to heat transfer without fins

q; = ’17‘41’70(1’;: o Tm) -

1
ql' = f?‘*i(rb — Tct:) - ‘??(‘4'5 + *Niqbf)(rb _Im) = a

where 4,  1s the base area (unexposed) for the fin

To enhance heat transfer 47, >> 4

That 1s. to increase the effective area 177,4..
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R, =t/(kyA)
T] TE Tb Tno
R,=L,/(k,A) R, =1/(h4n,)
_ Tl - Too _ T] - Tm

1= >R R +R,+R,
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Lecture — Six

Multi-Dimensional Steady State Heat Conduction

1- Introduction.

Heat Diffusion Equation

2 SIS k(azT " gl ot
Lot Dt oy’ 0z

Q This equation governs the Cartesian, temperature distribution

for a three-dimensional unsteady, heat transfer problem

mvolving heat generation.

Q For steady state ¢/ 0t =0

O No generation ¢ = 0

Q To solve for the full equation, it requ1res a total of six

boundary conditions: two for each direction. Only one initial

condition 1s needed to account for the transient behavior.

T
2

-+

Y+ 4 =kV2T + 4

2- Two Dimension Steady State Case.

For a2 -D, steady state situation, the heat equation 1s simplified to

2 bl
T o T . . : .
Tt = 0, 1t needs two boundary conditions m each direction.
ox- oy”

There are three approaches to solve this equation:

W Numerical Method: Finite difference or finite element schemes,
usually will be solved using computers.

Q Graphical Method: Limited use. However, the conduction
shape factor concept derived under this concept can be useful for
specific configurations. (see Table 4.1 for selected configurations)
O Analytical Method: The mathematical equation can be solved
using techniques like the method of separation of variables. (refer
to handout)
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3- Conduction Shape Factor.

QThis approach applied to 2-D conduction mvolving two
1sothermal surfaces, with all other surfaces being adiabatic.
The heat transfer from one surface (at a temperature T,) to the
other surface (at T,) can be expressed as: q=Sk(T,-T,) where k
1s the thermal conductivity of the solid and S 1s the conduction
shape factor.

Q The shape factor can be related to the thermal resistance:
q-Sk(T,-T)=(T,-T/(L/kS)= (T,-T,)/R,

where R, = 1/(kS)

O 1-D heat transfer can use shape factor also. Ex: Heat transfer

inside a plane wall of thickness L 1s g=kA(AT/L), S=A/L

O An Alaska oil pipe line 1s buried in the earth at a depth of 1
m. The horizontal pipe 1s a thin-walled of outside diameter of
50 cm. The pipe 1s very long and the averaged temperature of
the oil 1s 100°C and the ground soil temperature is at -20 °C
(k,,;=0.5W/m.K), estimate the heat loss per unit length of pipe.

T, From Table 8.7, case 1.
1 L>>D, z=3D/2

zZ=lm S 27L 2=x()
In(4z/D) In(4/05)
g = kS(T, — T,) = (0.5)(3.02)(100 + 20)

= 181.2(W) heat loss for every meter of pipe




Subject: Heat Transfer-I
Dr. Mustafa B. Al-hadithi

If the mass flow rate of the oil is 2 kg/s and the specific heat of
the o1l 1s 2 kJ/kg K, determine the temperature change in 1 m
of pipe length.

g=mC, AT, AT=—1_ = 1812 _ 404500
mC, 2000 %*2

Therefore, the total temperature variation can be significant if the pipe
1s very long. For example, 45°C for every 1 km of pipe length.
O Heating might be needed to prevent the oil from freezing up.

Q The heat transfer can not be considered constant for a long pipe

Heat Transfer at section with a temperature T(x)

qQ= M(T—o— 20) =1.51(T +20)(dx)
In(4z / D)
Energy balance: mC,7 —qg = mC, (T +dT)

mC, dar +1.51(7'+20) =0, _dar = —0.000378dx, ntegrate
dx 7' +20

T(x)= =20+ Ce ™™ atinletx =0, T(0) =100°C, C =120
T(x)=-20+ 120 ~0-000378x

100 | | 1 1
O Temperature drops
s0 - - cexponentially from the itial
Ix) temp. of 100°C
T Q It reaches 0°C at x=4740 m,
| | I I therefore, reheating is required

—50

2 3 . 5
0 1000 2000 3000 40005000 every 417 km
X
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4- Numerical Methods.

U Due to the increasing complexities encountered in the
development of modern technology. analytical solutions usually are
not available. For these problems, numerical solutions obtained
using high-speed computer are very useful, especially when the
geometry of the object of interest i1s irregular, or the boundary
conditions are nonlinear. In numerical analysis, two different
approaches are commonly used: The finite difference and the finite
element methods. In heat transfer problems, the finite difference

method 1s used more often and will be discussed here.

(1 The finite difference method involves:

L

*

*

*

Establish nodal networks

Derive finite difference approximations for the governing

equation at both interior and exterior nodal points

Develop a system of simultaneous algebraic nodal
equations
Solve the system of equations using numerical schemes

[ The basic idea 1s to subdivide the area of interest into sub-

volumes with the distance between adjacent nodes by Ax and Ay as

shown. If the distance between ponts 1s small enough, the

differential equation can be approximated locally by a set of finite

difference equations. Each node now represents a small region
where the nodal temperature i1s a measure of the average

temperature of the region.
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5- Finite Difference Approximation.

Example
Ax m,n+1
yd ™\
J' / P m-1,n m.n m+1.n

(
I \H\-/ &’ / f 111,11-;\\

x=mAX, y=nAy m-",n m+,n
mtermediate points
e . ;] 1oT o
Heat Diffusion Equation: V°T + 94_- —,
k «a ot
where a= - 1s the thermal diffusivity
pCPI’
. , 0 2
No generation and steady state: ¢=0 and P 0.=>VT=0
T

First, approximated the first order differentiation

at intermediate points (m+1/2.n) & (m-1/2.n)

ﬁ ~ AT _ ‘Tm+l.ﬁ' B Tm-ﬁ
X (m+1/2.n) Ax (m+1/2.n) Ax
ﬁ N A_T _ Tm_n - '?:r:—].._u
2 (m-1/2.n) Ax (m=1/2.n) Ax
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Next, approximate the second order differentiation at m,n

2 AT /| & —oT /0o
8 T ~ OI;@X m+1/2.n 5Tf0x m=1/2.n
ox? Ax
m.n
2
a T ~ Tm + ‘Tm 1. 2Im.n
5]x m.n (ﬂlx)

Similarly, the approximation can be applied to

the other dimension y

2

8 T ~ Tm.n+1 + Tm -1 QIm.H

oy, (Ay)°

~2 ~2 ’ "

o -T + g ‘T . Tm+lrz + I—;r.r ln 2Tm,n + ‘Tm.n+1 + Tm,n—l T 2‘Tm.n
5‘3&’2 5},3 o (Ax)— (A})z

To model the steady state. no generation heat equation: V°7 =0

This approximation can be simplified by specity Ax=Ay

and the nodal equation can be obtained as

Tnn+ 1, +1, ,0+T,,,—41,, =0

This equation approximates the nodal temperature distribution based on
the heat equation. This approximation i1s improved when the distance

between the adjacent nodal points 1s decreased:

T A’
AL _of Jim(Ay — O)£ =£

Since lim(Ax — 0)
Ax  ox Ay @y
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6- A System of Algebraic Equations.

[ The nodal equations derived previously are valid for all
interior points satisfying the steady state, no generation heat
equation. For each node, there 1s one such equation.

For example: for nodal point m=3, n=4, the equation 1s

Tyt Tyyt T3+ T55- 415,70

Ty =m(UA(Tou+ Tyat Ti3+ Tss)

[ Nodal relation table for exterior nodes (boundary conditions)
can be found 1n standard heat transfer textbooks (Table 4.2 of our
textbook).

[ Derive one equation for each nodal point (including both
interior and exterior points) in the system of interest. The result 1s
a system of N algebraic equations for a total of N nodal points.

Matrix Form

The system of equations:
andy +apd, +--ta Iy =G
Ayl +ayly +-+ay T, =C,

amTl + GNIATE +-t ﬂ_.wfw — CN

A total of N algebraic equations for the N nodal points and the
system can be expressed as a matrix formulation: [A][T]=[C]

dy, Ayttt iy Tl Cl
Ay, Ay 0 Ay T, C,
where A=| N , T L.T=| " |.C=| -~

Ayy Ayy  tt dyy Ty Cy
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Lecture Seven

Numerical Technique solutions

1- Numerical Solution.

AMatrix form: [A][T]=[C].

From linear algebra: [A]'1[A][T|=[A]'[C], [T]=[A]![C]

where [A]! is the mverse of matrix [A]. [T] 1s the solution
vector.

[ Matrix inversion requires cumbersome numerical computations

and 1s not efficient if the order of the matrix 1s high (>10)

1 Gauss elimination method and other matrix solvers are
usually available in many numerical solution package. For
example, “Numerical Recipes™ by Cambridge University
Press or their web source at www.nr.com.

[ For high order matrix, iterative methods are usually more

efficient. The famous Jacob1 & Gauss-Seidel iteration

methods will be mntroduced 1n the following.

Iteration
General algebraic equation for nodal point:

l N ) | Replace (k) by (k-1)
ZQUTJ ta,l+ Z a1, :(1 for the Jacobi iteration
Jj=1 Jj=i+l I:‘I*

(Example: a,, T} + a,,T, + a1 +---+a,, Ty =Cp i =3)

Rewrite the equation of the form:

i—-1 N
r® =G5 Yipo 5 8 pae
i " J ( J
i j=1 4y j=i+1 9
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O (k) - specify the level of the iteration, (k-1) means the

present level and (k) represents the new level.
1 An initial guess (k=0) is needed to start the iteration.

[ By substituting iterated values at (k-1) into the equation,

the new values at iteration (k) can be estimated

O The iteration will be stopped when max| Ti(k)-Ti(k-1) |<e.

where € specifies a predetermined value of acceptable error

Example

Solve the following system of equations using (a) the Jacobi
methods, (b) the Gauss Seidel iteration method.

4 X 11
1 2 ollyl=3 Reorganize into new form:
2 1 4| z| |16 =11 1 1
4 2 4

31 .
AX+2Y+Z =11, Y_E_EXH] Z
—X+2Y+0*Z =3, ; IX lY
2X+Y+4Z=16 STy

J (a) Jacob1 method: use mitial guess X0=Y0=20=1,
 stop when max| Xk-Xk-1.Yk-Yk-1.Zk-Zk-1 1<0.1
1 First iteration:

A X1=(11/4)-(1/2)Y0 - (1/4)Z0 =2

AY1=(3/2) +(1/2)X0=2

dZ1=4-(1/2) X0 -(1/4)Y0=13/4
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Second iteration: use the iterated values X1=2, Y!=2. Z1=13/4
X2=(11/4) - (1/2)Y! - (I/4)Zt = 15/16

Y2=(3/2) +(1/2)X =5/2

Z:=4-(1/2) X - (1/HYL=5/2

Converging Process:

[1.1.1]. [27 E} {E‘isi}[ZEEEE}[B:‘)__Q!;%}
| 11167272 18°32°32 | 1287167128

[519 517 767

—— ,——,—— |. Stop the iteration when
512 256 256

max ‘XS XY Ytz - 24\ <0.1

Final solution [1.014, 2.02, 2.996]
Exact solution [1, 2, 3]

(b) Gauss-Seidel 1teration: Substitute the iterated values into the

iterative process immediately after they are computed.
Use initial guess X" =Y° =2 =1

X—ﬂ—l}’—lZ, Y :§+1X, Z:4—l_1’—l}’
4 2 4 2 2 2 4
First iteration: Xlzﬂ_l (Yo)_l (ZE-)- :::_/2_ '\j; Immediate substitution
4 2 4
3 1Y) 3 /5
Y'==+ A’i_—+ 2)=— |
2 27 /(}"
I '\_. l I l i
Z = ——- ri-':— \y!) —_— — [—]:—
22_1__ 4 2( ) 412

19] {29 125 783} [1033 4095 24541}

Converging process: [1.1.1]. 2— — .| == i i
2 8 32 64 256 | 1024 2048 8192

The 1terated solution [1.009, 1.9995, 2.996] and 1t converges faster



Subject: Heat Transfer-I

Dr. Mustafa B. Al-hadithi

2- Numerical Method (Special Cases)

O For all the special cases m,n+]

discussed 1n the following, the aQ

derivation will be based on the el 1 +1
standard nodal point configuration il ESE A 8 1N PR
as shown to the right. I_ Q4

O Symmetric case: symmetrical relative 1

to the A-A axis. m,n-1

Inthis case, T, =T 414

Therefore the standard nodal equation can T\ axis A-A

be written as

Tm+l,r: + Tm—l,n + Tm,n+1 + Tm,n—l o 4Tm,n
- 2Tm+l,?‘? + Tm,n+l + Tm,n—l _4Tm,n - 0

[ Insulated surface case: If the axis
A-A 1s an msulated wall, therefore
there 1s no heat transfer across A-A.
Also, the surface area for q; and q;
1s only half of their original value.
Write the energy balance equation
(q,=0): Insulated surface ~

¢ +4q;+q,=0
A\T . —T AN\T,  —T T ., —-T
k(—TJ m,n+l ™. +k(—x‘} m,n-1 m.n + kAy m+1n mn 0
2 Ay 2 Ay Ax
2Tm+1:ﬂ + Tm:n+1 + Tm,n—l o 4Tm:n = 0

This equation is identical to the symmetrical case discussed previously.
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O With internal generation G=gV where g 1s the power generated
per unit volume (W/m?). Based on the energy balance concept:

G+q+q+4q,+G
G+, +q;+q,+g(Ax)(Ay)(1) =0
Use 1 to represent the dimension along the z-direction.

k(Tm+l_?I + Tm + 2::1 n+l + I;n n-1" 4Tm n) + g (Anx)z = 0
2‘—;111+1H_|_;“r;.=:r1:u'+]ﬂ n+l+Tmn—1_41—;nn+ Q(AA) 0

[0 Radiation heat exchange with respect to the surrounding
(assume no convection, no generation to simplify the derivation).
Given surface emissivity €, surrounding temperature T,

o, T From energy balance concept:
ad ST

" A2t 37947 rad
11,11
@ @ =) + I + = = I
m-1.n m+1.n
P Q4
m.n-1
(AvAT . —T I -7 AT —T .
,I\' ﬁ_-‘] m—1n m.n +JE\—(AT] m.n—1 m.n + k [A_1J m+1.n mn _ E‘G‘{E\I)(Tm n4 _ Tsuw-’l)
\ 2 Ax Ay 2 Ax B :
I‘{I +Im+1n+2Tmn 1 4Imn) 255( )(I4 _Tsin)
Fe———————
P2 A A
T +‘Tm+1n+2Tmn 1 m.n EO-{ T) y EG( T]I4
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Lecture Eight

Unsteady State Heat Conduction

1- Unsteady Heat Transfer.

Many heat transfer problems require the understanding ot
the complete time history of the temperature variation. For
example, in metallurgy, the heat treating process can be
controlled to directly affect the characteristics of the
processed materials. Annealing (slow cool) can soften
metals and 1mprove ductility. On the other hand.
quenching (rapid cool) can harden the strain boundary and
increase strength. In order to characterize this transient
behavior, the full unsteady equation 1s needed:

cT ) 1 oT )
pc—=kVT, or —=V'T

cr a cf
where o= 1s the thermal diffusivity

ols

“A heated/cooled body at T, is suddenly exposed to fluid at T  with a
known heat transfer coefficient . Either evaluate the temperature ar a
given time, or find time for a given temperarure.”

QL Dar /’_H\\
=> ( (@)
=g

Cool air i

",

Q: “How good an approximation would it be to say the bar is more or less
isothermal?”

A: “Depends on the relative importance of the thermal conductivity in the
thermal circuit compared to the convective heat transfer coefficient”,
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2- Biot Number (Bi).

*Defined to describe the relative resistance in a thermal circuit of
the convection compared

B hL, L, /kA Internal conduction resistance within solid
? = = =

k 1/h4  External convection resistance at body surface

L_1s a characteristic length of the body

Bi1—0: No conduction resistance at all. The body is 1sothermal.

Small Bi: Conduction resistance 1s less important. The body may still
be approximated as 1sothermal (purple temp. plot in figure)
Lumped capacitance analysis can be performed.

Large Bi: Conduction resistance 1s significant. The body cannot be treated as
isothermal (blue temp. plot in figure).

3- Lumped Parameter Analysis.
Transient heat transfer with no internal resistance.

Valid for B1<0.1 H \
I |

|

Total Resistance= R

external internal
GE: ‘ﬂ; :—}:‘jp (T-T.) BC: I(t=0)=1
Solution: Jer @ =T — T, therefore
d® hA
dr me

p
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{p"’ocn .\E‘Q‘&é\
©,=1,-1,
© hA
In—=
O, mec
hA .
G) H‘FCP
_— e
©,
T_T » /mep - To determine the temperature at a given time. or
Z__T® — e [/ M _Todetermine the time required for the
]: T, temperature to reach a specified value.

Note: Temperature function only of time and not of
space!

I-T hA
e —exp(———1)
1, —1 pcV

1A ARATEY S
pclV k N pc)L L L.

Thermal diffusivity: ... ( k | (m*s")
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Deftine Fo as the Fourier number (dimensionless time)

hL.

x

(04 . -
Fo= F!‘ and Biot number Bi =

[

The temperature variation can be expressed as

T = exp(-B1*Fo)

where L. is a characteristic length scale : realte to the size of the solid invloved in the problem

.
for example L, = TO (half - radius) when the solid is a cylinder.

T : ) o
L. =-2 (one - third radius) when the solid is sphere
3

L. =L (half thickness) when the solid 1s aplane wall with a 2L thickness

4- Analytical Solution.

The Plane Wall: Solution to the Heat Equation for a Plane Wall
with Symmetrical Convection Conditions

~k—{ =hT@L-T,]

cxX

! ] Al
l. oT _ 62:[ i T, ) =T;
a or ox’ |
I(x,0)=T, - | T., h
|
al _, 1 | 114
ax x=0 i
o) | i |

x=/
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Note: Once spatial variability of temperature is included,
there is existence of seven different independent
variables.

How may the functional dependence be simplified?

*The answer is Non-dimensionalisation. We first
need to understand the physics behind the
phenomenon, identify parameters governing the
process, and group them into meaningful non-
dimensional numbers.

Dimensionless temperature difference: g = 0 B I'—1,
QJ I: -1 o0
. . ) * X
Dimensionless coordinate: X = E
« of
Dimensionless time: r = F =Fo
Bi_ hL
The Biot Number: 1= A
solid
The solution for temperature will now be a function of the other non-dimensional
quantities

@ = f(x .Fo.Bi)

o]
Exact Solution: g~ = S exp(— ;"ZFO)COS(;’ xx)
— n = M n
n=l1
4sind , _
Cn = —" .-;n tan .'_:n = Bi
24, +sin(2<,)

The roots (eigenvalues) of the equation can be obtained from tables given in standard textbooks.
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The One-Term Approximation Fo > 0.2

Variation of mid-plane temperature with time Fo (x~ =0)
« I —T
g, =—=
T —

i oo

~C, exp(— SOF o)

From tables given in standard textbooks. one can obtain , and é' 1
as a function of Bi.

Variation of temperature with location (x*) and time ( Fo ):

* *

0 =6, = cos(é’lxx)

Change in thermal energy storage with time: AE, =-0
s, |«
_ 51
Q - Qn 1- - ‘90
S1

Q{} ZPCV(I;—TM)

5- Graphical Representation (The Heisler Charts).

Midplane Temperature:

100 50

1.0

0.7

0.5
0.4

0.3

0.2

0.1 503100~ Bi~ = kihL

25N 70:80
> 50, 9
T2 10 12NN 20 NEE D AN
g N\ 30245
7 18
6 { A\ ¥
5 16

0.007 25
8881 e
e 0.2 AV
0.003 AN 18
0.002 ! R
BN ‘l-\\
\o.05 1.211 6
0.001

1 2 3 4 6 810121416182022 24 262830405060708090 110 130 150 300 400 500 800 7000
" =laill?) = Fo
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Temperature Distribution

1.0

0.2 L e L .
09 Change in Thermal Energy Storage
0.8 0.4 1.0
0.9
0.7 08 )
0.7 8
06|06 EE Siafe
1 - 0.6 i e O &5
Sl o, SIS G S o o 95 5
Q{. J.5 -
[ R 0.4 8
" 03
o e B
0.4 0.2
0.8 0.1
0.2 0
10 10 10 10 10 1 10 10 10
0.z War\ | g po
0.9 (Eet) < e s
0.1
1.0
'ZJ'I:.IUI 002 00501 02 0510 23 5 10 20 50 100

(kALY = B~
Assumptions in using Heisler charts:
«Constant T1 and thermal properties over the body

*Constant boundary fluid Teo by step change
Simple geometry: slab, cylinder or sphere
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Lecture Nine

Unsteady Radial System

1- Radial System Coordinate.

Long Rods or Spheres Heated or Cooled by convection mechanism.

Tr, 0) =
i

&\k
X

i

P

Similar Heisler charts are available for radial systems in standard
text books.

Important tips: Pay attention to the length scale used in
those charts, and calculate your Biot number accordingly.

2- Unsteady Heat Transfer in Semi-infinite Solids.

[ Solidification process of the coating layer during a thermal spray
operation 1s an unsteady heat transter problem. As we discuss
earlier., thermal spray process deposits thin layer of coating
materials on surface for protection and thermal resistant purposes,
as shown. The heated, molten materials will attach to the substrate
and cool down rapidly. The cooling process 1s important to prevent
the accumulation of residual thermal stresses 1n the coating layer.
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U liquid
Coating with density p. .

latent heat of fusion: h /N1
|3 r

h \

Substrate. k. o

Example
1 As described i the previous slide, the cooling process can now be
modeled as heat loss through a semi-infinite solid. (Since the substrate
1s significantly thicker than the coating layer) The molten material 1s at
the fusion temperature T; and the substrate 1s maintained at a constant
temperature T,. Derive an expression for the total time that is required
to solidify the coating layer of thickness d.

 Assume the molten layer stays at a constant temperature T
throughout the process. The heat loss to the substrate is solely
supplied by the release of the latent heat of fusion.

From energy balance:
h..Am (solidified mass during At) = AQ= ¢" AAf (energy input)

h, ? =q"A. where m = pV = pAS,
1

l where S is solidified thickness

as _
Heat transfer from PE =q
the molten material
to the substrate

(@=q"A)
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 Identify that the previous situation corresponds to the case of a semi-
infinite transient heat transfer problem with a constant surface
temperature boundary condition. This boundary condition can be
modeled as a special case of convection boundary condition case by

setting h=a=, therefore, T=T ).

If the surface temperature 1s T, and the initial temperature of
the bolck is T.. the analytical solution of the problem can be found:
The temperature distribution and the heat transfer mto the block are:

T(x.1)-T, {
—_— =
L-1 !

]ﬁwhere erf( ) 1s the Gaussian error function.

X
Nat |
2 J‘W 2
It 1s defined as erf(w)=——| e dv
T

KT -T)

q;'(ﬂ—ﬁ

From the previous equation

as . KT.-T) ¢ KT,-I)
I.; - = ’:#’ ﬂlld
Py dt 1 Nrat J; phjf\,’fmJ‘
2K(T, - 7)) - Sphy ﬁ
o(f)y="rt 17 therefore, & « 4/t. Cooling time r—
(0= pf: N T J_ ‘ \/_ . 4.3. I, T

A Use the following values to calculate: k=120 W/m.K, a=4x10-> m?/s,
p=3970 kg/m?. and h ~=3.577 x10° J/kg, T=2318 K. T,=300K, and &=2

nmim

2K(T, - T
L~ 1) 17— 0.0030447

o(t) =
(1) ph e
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J Therefore. the layer solidifies
very fast initially and then slows
down as shown m the figure

J Note:  we neglect contact
resistance between the coating and
the  substrate and  assume
temperature of the coating material
stays the same even after it
solidifies.

 To solidify 2 mm thickness, 1t takes 0.43 seconds.

J What will be the substrate temperature as it varies i time? The

temperature distribution 1s:

I'(x.0)-T,
—T.—TS —é'ff(

I

X
2Jat

T(x,r)=2318+(300-231 8)913”[

&

] — 2318 2018erf| 79.06 -

et \ \/?J

J For a fixed distance away from the surface, we can examine
the variation of the temperature as a function of time. Example,
1 cm deep 1nto the substrate the temperature should behave as:

T(x=001L7)=2318—2018erf 79.06 —A;—

0.79
2318—2018erf —=
A ’ f v’f."
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x=1 cm
= x=2cm
=7 x=3cm

U At x=1 cm. the temperature
rises almost instantaneously at a
very fast rate. A short time later,
the rate of temp. increase slows
down significantly since the
energy has to distribute to a very
large mass.

O At deeper depth (x=2 & 3
cm), the temperature will not
respond to the surface condition

until much later.

1 We can also examine the spatial temperature distribution at
any given time, say at t=1 second.

I'(x,t=1)=2318 —2018erf 79.06% = 2318 —2018erf 79.06x

Temperature (K)

3000

T1(2) 5000

T2(x)

T3(x) 1000

AT

l l I I
0 001 002 003 004005

X
distance (m)

= t=1s.
- 1=5s.
- 1t=10s.

(] Heat penetrates 1mto the
substrate as shown for different
time 1nstants.

Q It takes more than 5 seconds
for the energy to transfer to a
depth of 5 c¢cm into the substrate
U The slopes of the temperature
profiles indicate the amount of
conduction heat transfer at that
mstant.
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Lecture Ten

Numerical Methods for Unsteady Heat Transfer

J Unsteady heat transfer equation, no generation, constant k, two-
dimensional in Cartesian coordimate:
l1er o'T @

- - +
a ot ox oy

d We have learned how to discretize the Laplacian operator info system of
finite difference equations using nodal network. For the unsteady
problem, the temperature variation with time needs to be discretized too.
To be consistent with the notation from the book, we choose to analyze the
time variation in small time increment At, such that the real time t=pAt.
The time differentiation can be approximated as:

aT I -T1F
—| ~-—"% while m & n correspond to nodal location

ot o At

such that x=mAx, and y=nAy as mtroduced earlier.

1- Finite Difference Equation.

m.n+l

m-1.n mln | mtl.n

P

m.n-1

 From the nodal network to the left, the heat equation can be written
in finite difference form:
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]' I:;Jpnl Tnj'un _ Tm+1 A + TP o 2Inin Irfnﬂ + Tn‘?n 1 71:::?
o At (&x)‘ (Ay)’
. . . oAt
Assume Ax=Ay and the discretized Fourier number Fc}:ﬁ
Ax )
Tr:::l:F (Tmln_l_r 1}?+Tm}r1+Tm}r1)+(1_4FO) m.n

This 1s the explicit, finite difference equation for a 2-D,
unsteady heat transfer equation.
The temperature at time p+1 is explicitly expressed as a
function of neighboring temperatures at an earlier time p
U Some common nodal configurations are listed in table for your
reference. On the third column of the table, there 1s a stability
criterion for each nodal configuration. This criterion has to be
satisfied for the finite difference solution to be stable. Otherwise,
the solution may be diverging and never reach the final solution.
W For example. Fo<1/4. That is, aAt/(Ax)? <1/4 and

At<(1/4a)(Ax)?. Therefore. the time mcrement has to be small
enough 1n order to maintain stability of the solution.

[ This criterion can also be interpreted as that we should require
the coefficient for T in the finite difference equation be greater
than or equal to zero.

 Question: Why this can be a problem? Can we just make time
increment as small as possible to avoid 1t?
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2- Finite Difference Solution.

Question: How do we solve the finite difference equation derived?

A First, by specifying initial conditions for all points inside the
nodal network. That 1s to specify values for all temperature at
time level p=0.

O Important: check stability criterion for each points.

dFrom the explicit equation, we can determine all temperature at
the next time level p+1=0+1=1. The following transient response
can then be determined by marching out in time p+2. p+3, and so

OIl.
Example

U Example: A flat plate at an initial temperature of 100 deg. 1s suddeul:y
immmersed nto a cold temperature bath of 0 deg. Use the unsteady finite
difference equation to determine the transient response of the temperature
of the plate.

L(thickness)=0.02 m, k=10 W/m.K, a=10x10° m?/s,
h=1000 W/m2.K, T=100°C, T _=0°C, Ax=0.01 m
X Bi=(hAx)/k=1, Fo=(aAt)/(Ax)*=0.1

- There are three nodal points: 1 interior and two

) exterior points: For node 2. it satisfies the case 1
configuration in table.

l

s ]
—

L =Fo(Ty + T + T + I)) + (1= 4Fo)Ty = Fo(Iy + T}) + (1= 2Fo)T;
=0.1(I;" + 1)+ 0.8T7

- o 1. .
Stability criterton: 1-2Fo = 0 or Fo=0.1 < S-1t1s satistied

Fa
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For nodes 1 & 3. they are consistent with the case 3 in table.
Node 1: I;7" = FoQQTy +T,” + I,7 +2BiT, )+ (1—4Fo —2BiFo)T,”

= Fo(2T +2BiT_) +(1-2Fo—2BiFo)T;" = 02T, +0.6T;"

Node 3: 7" = 0277 +0.6T7

Stability criterion: (1-2Fo-2BiFo) = 0, % = Fo(l+ Bi)=0.2 and 1t is satisfied

-

System of equations g, Use initial condition, T, = T} = T, =100,
7" =0.217 + 0.6 T =027 +0.6T = 80
L =01 +T7)+08T T =0T + 1Y)+ 08T =100
T/" =0.2T7 +0.6T7 / T} =027 + 06T, =80
Marching in time, T, =T, =80, T, =100
le = O.ZT; + 0.61‘"11 =0.2(100) + 0.6(80) = 68
T2 = 01T} + T+ 0.8T}! = 0.1(80 +80) + 0.8(100) = 96
T, =027 +0.67} =0.2(100)+ 0.6(80) = 68, and so on



